Лекция № 10. Понятие об обмене веществ. Биосинтез белков
Обмен веществ
Обмен веществ — важнейшее свойство живых организмов. Совокупность реакций обмена веществ, протекающих в организме, называется метаболизмом. Метаболизм состоит из реакций ассимиляции (пластического обмена, анаболизма) и реакций диссимиляции (энергетического обмена, катаболизма). Ассимиляция — совокупность реакций биосинтеза, протекающих в клетке, диссимиляция — совокупность реакций распада и окисления высокомолекулярных веществ, идущих с выделением энергии. Эти группы реакций взаимосвязаны: реакции биосинтеза невозможны без энергии, которая выделяется в реакциях энергетического обмена, реакции диссимиляции не идут без ферментов, образующихся в реакциях пластического обмена.
По типу обмена веществ организмы подразделяются на две группы: автотрофы и гетеротрофы. Автотрофы — организмы, способные синтезировать органические вещества из неорганических и использующие для этого синтеза или солнечную энергию, или энергию, выделяющуюся при окислении неорганических веществ. Гетеротрофы — организмы, использующие для своей жизнедеятельности органические вещества, синтезированные другими организмами. В качестве источника углерода автотрофы используют неорганические вещества (СО2), а гетеротрофы — экзогенные органические. Источники энергии: у автотрофов — энергия солнечного света (фотоавтотрофы) или энергия, выделяющаяся при окислении неорганических соединений (хемоавтотрофы), у гетеротрофов — энергия окисления органических веществ (хемогетеротрофы).
Большинство живых организмов относится или к фотоавтотрофам (растения), или к хемогетеротрофам (грибы, животные). Если организмы, в зависимости от условий, ведут себя как авто- либо как гетеротрофы, то их называют миксотрофами (эвглена зеленая).
Биосинтез белков
Биосинтез белков является важнейшим процессом анаболизма. Все признаки, свойства и функции клеток и организмов определяются в конечном итоге белками. Белки недолговечны, время их существования ограничено. В каждой клетке постоянно синтезируются тысячи различных белковых молекул. В начале 50-х гг. ХХ в. Ф. Крик сформулировал центральную догму молекулярной биологии: ДНК → РНК → белок. Согласно этой догме способность клетки синтезировать определенные белки закреплена наследственно, информация о последовательности аминокислот в белковой молекуле закодирована в виде последовательности нуклеотидов ДНК. Участок ДНК, несущий информацию о первичной структуре конкретного белка, называется геном. Гены не только хранят информацию о последовательности аминокислот в полипептидной цепочке, но и кодируют некоторые виды РНК: рРНК, входящие в состав рибосом, и тРНК, отвечающие за транспорт аминокислот. В процессе биосинтеза белка выделяют два основных этапа: транскрипция — синтез РНК на матрице ДНК (гена) — и трансляция — синтез полипептидной цепи.
Генетический код и его свойства
Генетический код — система записи информации о последовательности аминокислот в полипептиде последовательностью нуклеотидов ДНК или РНК. В настоящее время эта система записи считается расшифрованной.
Свойства генетического кода:
Таблица генетического кода
Первое основание
Второе основание
Третье основание
У(А)
Ц(Г)
А(Т)
Г(Ц)
У(А)
Фен Фен Лей Лей
Сер Сер Сер Сер
Тир Тир — —
Цис Цис — Три
У(А) Ц(Г) А(Т) Г(Ц)
Ц(Г)
Лей Лей Лей Лей
Про Про Про Про
Гис Гис Глн Глн
Арг Арг Арг Арг
У(А) Ц(Г) А(Т) Г(Ц)
А(Т)
Иле Иле Иле Мет
Тре Тре Тре Тре
Асн Асн Лиз Лиз
Сер Сер Арг Арг
У(А) Ц(Г) А(Т) Г(Ц)
Г(Ц)
Вал Вал Вал Вал
Ала Ала Ала Ала
Асп Асп Глу Глу
Гли Гли Гли Гли
У(А) Ц(Г) А(Т) Г(Ц)
* Первый нуклеотид в триплете — один из четырех левого вертикального ряда, второй — один из верхнего горизонтального ряда, третий — из правого вертикального.
Реакции матричного синтеза
Это особая категория химических реакций, происходящих в клетках живых организмов. Во время этих реакций происходит синтез полимерных молекул по плану, заложенному в структуре других полимерных молекул-матриц. На одной матрице может быть синтезировано неограниченное количество молекул-копий. К этой категории реакций относятся репликация, транскрипция, трансляция и обратная транскрипция.
Ген — участок молекулы ДНК, кодирующий первичную последовательность аминокислот в полипептиде или последовательность нуклеотидов в молекулах транспортных и рибосомных РНК. ДНК одной хромосомы может содержать несколько тысяч генов, которые располагаются в линейном порядке. Место гена в определенном участке хромосомы называется локусом. Особенностями строения гена эукариот являются: 1) наличие достаточно большого количества регуляторных блоков, 2) мозаичность (чередование кодирующих участков с некодирующими). Экзоны (Э) — участки гена, несущие информацию о строении полипептида. Интроны (И) — участки гена, не несущие информацию о строении полипептида. Число экзонов и интронов различных генов разное; экзоны чередуются с интронами, общая длина последних может превышать длину экзонов в два и более раз. Перед первым экзоном и после последнего экзона находятся нуклеотидные последовательности, называемые соответственно лидерной (ЛП) и трейлерной последовательностью (ТП). Лидерная и трейлерная последовательности, экзоны и интроны образуют единицу транскрипции. Промотор (П) — участок гена, к которому присоединяется фермент РНК-полимераза, представляет собой особое сочетание нуклеотидов. Перед единицей транскрипции, после нее, иногда в интронах находятся регуляторные элементы (РЭ), к которым относятся энхансеры и сайленсеры. Энхансеры ускоряют транскрипцию, сайленсеры тормозят ее.
Транскрипция у эукариот
Транскрипция — синтез РНК на матрице ДНК. Осуществляется ферментом РНК-полимеразой.
РНК-полимераза может присоединиться только к промотору, который находится на 3′-конце матричной цепи ДНК, и двигаться только от 3′- к 5′-концу этой матричной цепи ДНК. Синтез РНК происходит на одной из двух цепочек ДНК в соответствии с принципами комплементарности и антипараллельности. Строительным материалом и источником энергии для транскрипции являются рибонуклеозидтрифосфаты (АТФ, УТФ, ГТФ, ЦТФ).
В результате транскрипции образуется «незрелая» иРНК (про-иРНК), которая проходит стадию созревания или процессинга. Процессинг включает в себя: 1) КЭПирование 5′-конца, 2) полиаденилирование 3′-конца (присоединение нескольких десятков адениловых нуклеотидов), 3) сплайсинг (вырезание интронов и сшивание экзонов). В зрелой иРНК выделяют КЭП, транслируемую область (сшитые в одно целое экзоны), нетранслируемые области (НТО) и полиадениловый «хвост».
Транслируемая область начинается кодоном-инициатором, заканчивается кодонами-терминаторами. НТО содержат информацию, определяющую поведение РНК в клетке: срок «жизни», активность, локализацию.
Транскрипция и процессинг происходят в клеточном ядре. Зрелая иРНК приобретает определенную пространственную конформацию, окружается белками и в таком виде через ядерные поры транспортируется к рибосомам; иРНК эукариот, как правило, моноцистронны (кодируют только одну полипептидную цепь).
Трансляция
Трансляция — синтез полипептидной цепи на матрице иРНК.
Органоиды, обеспечивающие трансляцию, — рибосомы. У эукариот рибосомы находятся в некоторых органоидах — митохондриях и пластидах (70S-рибосомы), в свободном виде в цитоплазме (80S-рибосомы) и на мембранах эндоплазматической сети (80S-рибосомы). Таким образом, синтез белковых молекул может происходить в цитоплазме, на шероховатой эндоплазматической сети, в митохондриях и пластидах. В цитоплазме синтезируются белки для собственных нужд клетки; белки, синтезируемые на ЭПС, транспортируются по ее каналам в комплекс Гольджи и выводятся из клетки. В рибосоме выделяют малую и большую субъединицы. Малая субъединица рибосомы отвечает за генетические, декодирующие функции; большая — за биохимические, ферментативные.
В малой субъединице рибосомы расположен функциональный центр (ФЦР) с двумя участками — пептидильным (Р-участок) и аминоацильным (А-участок). В ФЦР может находиться шесть нуклеотидов иРНК, три — в пептидильном и три — в аминоацильном участках.
Для транспорта аминокислот к рибосомам используются транспортные РНК, тРНК (лекция №4). Длина тРНК от 75 до 95 нуклеотидных остатков. Они имеют третичную структуру, по форме напоминающую лист клевера. В тРНК различают антикодоновую петлю и акцепторный участок. В антикодоновой петле РНК имеется антикодон, комплементарный кодовому триплету определенной аминокислоты, а акцепторный участок на 3′-конце способен с помощью фермента аминоацил-тРНК-синтетазы присоединять именно эту аминокислоту (с затратой АТФ). Таким образом, у каждой аминокислоты есть свои тРНК и свои ферменты, присоединяющие аминокислоту к тРНК.
Транспорт аминокислот к рибосомам: 1 — фермент; 2 — тРНК; 3 — аминокислота.
Двадцать видов аминокислот кодируются 61 кодоном, теоретически может быть 61 вид тРНК с соответствующими антикодонами. Но кодируемых аминокислот всего 20 видов, значит, у одной аминокислоты может быть несколько тРНК. Установлено существование нескольких тРНК, способных связываться с одним и тем же кодоном (последний нуклеотид в антикодоне тРНК не всегда важен), поэтому в клетке обнаружено всего около 40 различных тРНК.
Синтез белка начинается с того момента, когда к 5′-концу иРНК присоединяется малая субъединица рибосомы, в Р-участок которой заходит метиониновая тРНК (транспортирующая аминокислоту метионин). Следует отметить, что любая полипептидная цепь на N-конце сначала имеет метионин, который в дальнейшем чаще всего отщепляется. Синтез полипептида идет от N-конца к С-концу, то есть пептидная связь образуется между карбоксильной группой первой и аминогруппой второй аминокислот.
Затем происходит присоединение большой субъединицы рибосомы, и в А-участок поступает вторая тРНК, чей антикодон комплементарно спаривается с кодоном иРНК, находящимся в А-участке.
Пептидилтрансферазный центр большой субъединицы катализирует образование пептидной связи между метионином и второй аминокислотой. Отдельного фермента, катализирующего образование пептидных связей, не существует. Энергия для образования пептидной связи поставляется за счет гидролиза ГТФ.
Как только образовалась пептидная связь, метиониновая тРНК отсоединяется от метионина, а рибосома передвигается на следующий кодовый триплет иРНК, который оказывается в А-участке рибосомы, а метиониновая тРНК выталкивается в цитоплазму. На один цикл расходуется 2 молекулы ГТФ. В А-участок заходит третья тРНК, и образуется пептидная связь между второй и третьей аминокислотами.
Трансляция идет до тех пор, пока в А-участок не попадает кодон-терминатор (УАА, УАГ или УГА), с которым связывается особый белковый фактор освобождения. Полипептидная цепь отделяется от тРНК и покидает рибосому. Происходит диссоциация, разъединение субъединиц рибосомы.
Скорость передвижения рибосомы по иРНК — 5–6 триплетов в секунду, на синтез белковой молекулы, состоящей из сотен аминокислотных остатков, клетке требуется несколько минут. Первым белком, синтезированным искусственно, был инсулин, состоящий из 51 аминокислотного остатка. Потребовалось провести 5000 операций, в работе в течение трех лет принимали участие 10 человек.
В трансляции можно выделить три стадии: а) инициации (образование иницаторного комплекса), б) элонгации (непосредственно «конвейер», соединение аминокислот друг с другом), в) терминации (образование терминирующего комплекса).
Транскрипция и трансляция у прокариот
«Механизмы» сборки полинуклеотидных и полипептидных цепочек у прокариот и эукариот не различаются. Но в связи с тем, что гены прокариот не имеют экзонов и интронов (исключение — гены архебактерий), располагаются группами, и на эту группу генов приходится один промотор, появляются следующие особенности транскрипции и трансляции у прокариот.
В статье мы дадим определение биосинтезу и рассмотрим основные этапы синтеза белков. Разберёмся, чем трансляция отличается от транскрипции.
В клетках непрерывно идут процессы обмена веществ — процессы синтеза и распада веществ. Каждая клетка синтезирует необходимые ей вещества. Этот процесс называется биосинтезом.
Биосинтез — это процесс создания сложных органических веществ в ходе биохимических реакций, протекающих с помощью ферментов. Биосинтез необходим для выживания — без него клетка умрёт.
Одним из важнейших процессов биосинтеза в клетке является процесс биосинтеза белков, который включает в себя особые реакции, встречающиеся только в живой клетке — это реакции матричного синтеза. Матричный синтез — это синтез новых молекул в соответствии с планом, заложенным в других уже существующих молекулах.
Синтез белка в клетке протекает при участии специальных органелл — рибосом. Это немембранные органеллы, состоящие из рРНК и рибосомальных белков.
Последовательность аминокислот в каждом белке определяется последовательностью нуклеотидов в гене — участке ДНК, кодирующем именно этот белок. Соответствие между последовательностью аминокислот в белке и последовательностью нуклеотидов в кодирующих его ДНК и иРНК определяется универсальным правилом — генетическим кодом.
Информация о белке может быть записана в нуклеиновой кислоте только одним способом — в виде последовательности нуклеотидов. ДНК построена из 4 видов нуклеотидов: аденина (А), тимина (Т), гуанина (Г), цитозина (Ц), а белки — из 20 видов аминокислот. Таким образом, возникает проблема перевода четырёхбуквенной записи информации в ДНК в двадцатибуквенную запись белков. Генетический код — соотношения нуклеотидных последовательностей и аминокислот, на основе которых осуществляется такой перевод.
Процесс синтеза белка в клетке можно разделить на два этапа: транскрипция и трансляция.
Транскрипция — первый этап биосинтеза белка
Транскрипция — это процесс синтеза молекулы иРНК на участке молекулы ДНК.
Транскрипция (с лат. transcription — переписывание) происходит в ядре клетки с участием ферментов, основную работу из которых осуществляет транскриптаза. В этом процессе матрицей является молекула ДНК.
Специальный фермент находит ген и раскручивает участок двойной спирали ДНК. Фермент перемещается вдоль цепи ДНК и строит цепь информационной РНК в соответствии с принципом комплементарности. По мере движения фермента растущая цепь РНК матрицы отходит от молекулы, а двойная цепь ДНК восстанавливается. Когда фермент достигает конца копирования участка, то есть доходит до участка, называемого стоп-кодоном, молекула РНК отделяется от матрицы, то есть от молекулы ДНК. Таким образом, транскрипция — это первый этап биосинтеза белка. На этом этапе происходит считывание информации путём синтеза информационной РНК.
Копировать информацию, хотя она уже содержится в молекуле ДНК, необходимо по следующим причинам: синтез белка происходит в цитоплазме, а молекула ДНК слишком большая и не может пройти через ядерные поры в цитоплазму. А маленькая копия её участка — иРНК — может транспортироваться в цитоплазму.
После транскрипции громоздкая молекула ДНК остаётся в ядре, а молекула иРНК подвергается «созреванию» — происходит процессинг иРНК. На её 5’ конец подвешивается КЭП для защиты этого конца иРНК от РНКаз — ферментов, разрушающих молекулы РНК. На 3’ конце достраивается поли(А)-хвост, который также служит для защиты молекулы. После этого проходит сплайсинг — вырезание интронов (некодирующих участков) и сшивание экзонов (информационных участков). После процессинга подготовленная молекула транспортируется из ядра в цитоплазму через ядерные поры.
Транскрипция пошагово:
Проверьте себя: помните ли вы принцип комплементарности? Молекула ДНК состоит из двух спирально закрученных цепей. Цепи в молекуле ДНК противоположно направлены. Остов цепей ДНК образован сахарофосфатными остатками, а азотистые основания одной цепи располагаются в строго определённом порядке напротив азотистых оснований другой — это и есть правило комплементарности.
Трансляция — второй этап биосинтеза белка
Трансляция — это перевод информации с языка нуклеотидов на язык аминокислот.
Что же происходит в клетке? Трансляция представляет собой непосредственно процесс построения белковой молекулы из аминокислот. Трансляция происходит в цитоплазме клетки. В трансляции участвуют рибосомы, ферменты и три вида РНК: иРНК, тРНК и рРНК. Главным поставщиком энергии при трансляции служит молекула АТФ — аденозинтрифосфорная кислота.
Во время трансляции нуклеотидные последовательности информационной РНК переводятся в последовательность аминокислот в молекуле полипептидной цепи. Этот процесс идёт в цитоплазме на рибосомах. Образовавшиеся информационные РНК выходят из ядра через поры и отправляются к рибосомам. Рибосомы — уникальный сборочный аппарат. Рибосома скользит по иРНК и выстраивает из определённых аминокислот длинную полимерную цепь белка. Аминокислоты доставляются к рибосомам с помощью транспортных РНК. Для каждой аминокислоты требуется своя транспортная РНК, которая имеет форму трилистника. У неё есть участок, к которому присоединяется аминокислота и другой триплетный антикодон, который связывается с комплементарным кодоном в молекуле иРНК.
Цепочка информационной РНК обеспечивает определённую последовательность аминокислот в цепочке молекулы белка. Время жизни информационной РНК колеблется от двух минут (как у некоторых бактерий) до нескольких дней (как, например, у высших млекопитающих). Затем информационная РНК разрушается под действием ферментов, а нуклеотиды используются для синтеза новой молекулы информационной РНК. Таким образом, клетка контролирует количество синтезируемых белков и их тип.
Трансляция пошагово:
По промокоду BIO92021 вы получите бесплатный доступ к курсу биологии 9 класса. Выберите нужный раздел и изучайте биологию вместе с домашней онлайн-школой «Фоксфорда»!
Резюме
Теперь вы знаете, что биосинтез необходим для выживания — без него клетка умрёт. Процесс биосинтеза белков включает в себя особые реакции, встречающиеся только в живой клетке, — это реакции матричного синтеза.
Синтез белка состоит из двух этапов: транскрипции (образование информационной РНК по матрице ДНК, протекает в ядре клетки) и трансляции (эта стадия проходит в цитоплазме клетки на рибосомах). Эти этапы сменяют друг друга и состоят из последовательных процессов.
Наследственная информация – это информация о строении белка (информация о том, какие аминокислоты в каком порядке соединять при синтезе первичной структуры белка).
Информация о строении белков закодирована в ДНК, которая у эукариот входит в состав хромосом и находится в ядре. Участок ДНК (хромосомы), в котором закодирована информация об одном белке, называется ген.
Транскрипция – это переписывание информации с ДНК на иРНК (информационную РНК). иРНК переносит информацию из ядра в цитоплазму, к месту синтеза белка (к рибосоме).
Трансляция – это процесс биосинтеза белка. Внутри рибосомы к кодонам иРНК по принципу комплементарности присоединяются антикодоны тРНК. Рибосома пептидной связью соединяет между собой аминокислоты, принесенные тРНК, получается белок.
Реакции транскрипции, трансляции, а так же репликации (удвоения ДНК) являются реакциями матричного синтеза. ДНК служит матрицей для синтеза иРНК, иРНК служит матрицей для синтеза белка.
Генетический код – это способ, с помощью которого информация о строении белка записана в ДНК.
Свойства генкода
1) Триплетность: одна аминокислота кодируется тремя нуклеотидами. Эти 3 нуклеотида в ДНК называются триплет, в иРНК – кодон, в тРНК – антикодон (но в ЕГЭ может быть и «кодовый триплет» и т.п.)
2) Избыточность (вырожденность): аминокислот всего 20, а триплетов, кодирующих аминокислоты – 61, поэтому каждая аминокислота кодируется несколькими триплетами.
3) Однозначность: каждый триплет (кодон) кодирует только одну аминокислоту.
4) Универсальность: генетический код одинаков для всех живых организмов на Земле.
Задачи
Задачи на количество нуклеотидов/аминокислот 3 нуклеотида = 1 триплет = 1 аминокислота = 1 тРНК
Задачи на АТГЦ ДНК иРНК тРНК А У А Т А У Г Ц Г Ц Г Ц
Еще можно почитать
Тесты и задания
Выберите один, наиболее правильный вариант. иРНК является копией 1) одного гена или группы генов 2) цепи молекулы белка 3) одной молекулы белка 4) части плазматической мембраны
Выберите один, наиболее правильный вариант. Первичная структура молекулы белка, заданная последовательностью нуклеотидов иРНК, формируется в процессе 1) трансляции 2) транскрипции 3) редупликации 4) денатурации
Выберите один, наиболее правильный вариант. Синтез гемоглобина в клетке контролирует определенный отрезок молекулы ДНК, который называют 1) кодоном 2) триплетом 3) генетическим кодом 4) геном
Выберите один, наиболее правильный вариант. Одной и той же аминокислоте соответствует антикодон ЦАА на транспортной РНК и триплет на ДНК 1) ЦАА 2) ЦУУ 3) ГТТ 4) ГАА
Выберите один, наиболее правильный вариант. Антикодону ААУ на транспортной РНК соответствует триплет на ДНК 1) ТТА 2) ААТ 3) ААА 4) ТТТ
Выберите один, наиболее правильный вариант. Каждая аминокислота в клетке кодируется 1) одной молекулой ДНК 2) несколькими триплетами 3) несколькими генами 4) одним нуклеотидом
Выберите один, наиболее правильный вариант. Функциональная единица генетического кода 1) нуклеотид 2) триплет 3) аминокислота 4) тРНК
Выберите один, наиболее правильный вариант. Какой антикодон транспортной РНК соответствует триплету ТГА в молекуле ДНК 1) АЦУ 2) ЦУГ 3) УГА 4) АГА
Выберите один, наиболее правильный вариант. Генетический код является универсальным, так как 1) каждая аминокислота кодируется тройкой нуклеотидов 2) место аминокислоты в молекуле белка определяют разные триплеты 3) он един для всех живущих на Земле существ 4) несколько триплетов кодируют одну аминокислоту
Выберите один, наиболее правильный вариант. Участок ДНК, содержащий информацию об одной полипептидной цепи, называют 1) хромосомой 2) триплетом 3) геном 4) кодом
Выберите один, наиболее правильный вариант. Матрицей для трансляции служит молекула 1) тРНК 2) ДНК 3) рРНК 4) иРНК
ТРАНСКРИПЦИЯ Все перечисленные ниже признаки, кроме двух, можно использовать для описания транскрипции у эукариот. Определите два признака, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны. 1) образование полинуклеотидной цепи 2) удвоение молекулы ДНК 3) матрицей служит молекула ДНК 4) соединяются нуклеотиды, содержащие дезоксирибозу 5) происходит в ядре
2. Установите соответствие между характеристиками и процессами: 1) транскрипция, 2) трансляция. Запишите цифры 1 и 2 в порядке, соответствующем буквам. А) синтезируется три вида РНК Б) происходит с помощью рибосом В) образуется пептидная связь между мономерами Г) у эукариот происходит в ядре Д) в качестве матрицы используется ДНК Е) осуществляется ферментом РНК-полимеразой
2. Установите соответствие между характеристиками и реакциями матричного синтеза: 1) репликация, 2) транскрипция, 3) трансляция. Запишите цифры 1-3 в порядке, соответствующем буквам. А) работа фермента РНК-полимераза Б) образование полисомы В) синтез всех видов РНК Г) работа фермента ДНК-полимераза Д) рост полипептидной цепи
ТРАНСЛЯЦИЯ КРОМЕ 1. Все перечисленные ниже понятия, кроме двух, используются для описания трансляции. Определите два признака, «выпадающие» из общего списка, и запишите цифры, под которыми они указаны. 1) матричный синтез 2) митотическое веретено 3) полисома 4) пептидная связь 5) высшие жирные кислоты
2. Все перечисленные ниже термины, кроме двух, используются для описания процесса трансляции. Определите два термина, «выпадающих» из общего списка, и запишите в таблицу цифры, под которыми они указаны. 1) кодон 2) триплет 3) фотолиз 4) репликация 5) матрица
БИОСИНТЕЗ Выберите три варианта. Биосинтез белка, в отличие от фотосинтеза, происходит 1) в хлоропластах 2) в митохондриях 3) в реакциях пластического обмена 4) в реакциях матричного типа 5) в лизосомах 6) в лейкопластах
БИОСИНТЕЗ ПОСЛЕДОВАТЕЛЬНОСТЬ 1. Определите последовательность процессов, обеспечивающих биосинтез белка. Запишите соответствующую последовательность цифр. 1) образование пептидных связей между аминокислотами 2) присоединение антикодона тРНК к комплементарному кодону иРНК 3) синтез молекул иРНК на ДНК 4) перемещение иРНК в цитоплазме и ее расположение на рибосоме 5) доставка с помощью тРНК аминокислот к рибосоме
2. Установите последовательность процессов биосинтеза белка в клетке. Запишите соответствующую последовательность цифр. 1) образование пептидной связи между аминокислотами 2) взаимодействие кодона иРНК и антикодона тРНК 3) выход тРНК из рибосомы 4) соединение иРНК с рибосомой 5) выход иРНК из ядра в цитоплазму 6) синтез иРНК
3. Установите последовательность процессов в биосинтезе белка. Запишите соответствующую последовательность цифр. 1) синтез иРНК на ДНК 2) доставка аминокислоты к рибосоме 3) образование пептидной связи между аминокислотами 4) присоединение аминокислоты к тРНК 5) соединение иРНК с двумя субъединицами рибосомы
4. Установите последовательность этапов биосинтеза белка. Запишите соответствующую последовательность цифр. 1) отделение молекулы белка от рибосомы 2) присоединение тРНК к стартовому кодону 3) транскрипция 4) удлинение полипептидной цепи 5) выход мРНК из ядра в цитоплазму
5. Установите правильную последовательность процессов биосинтеза белка. Запишите соответствующую последовательность цифр. 1) присоединение аминокислоты к пептиду 2) синтез иРНК на ДНК 3) узнавание кодоном антикодона 4) объединение иРНК с рибосомой 5) выход иРНК в цитоплазму
БИОСИНТЕЗ КРОМЕ 1. Все приведённые ниже признаки, кроме двух, можно использовать для описания процесса биосинтеза белка в клетке. Определите два признака, «выпадающих» из общего списка, и запишите в ответ цифры, под которыми они указаны. 1) Процесс происходит при наличии ферментов. 2) Центральная роль в процессе принадлежит молекулам РНК. 3) Процесс сопровождается синтезом АТФ. 4) Мономерами для образования молекул служат аминокислоты. 5) Сборка молекул белков осуществляется в лизосомах.
2. Все перечисленные ниже признаки, кроме двух, используют для описания процессов, необходимых для синтеза полипептидной цепи. Определите два признака, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны. 1) транскрипция информационной РНК в ядре 2) транспорт аминокислот из цитоплазмы на рибосому 3) репликация ДНК 4) образование пировиноградной кислоты 5) соединение аминокислот
МАТРИЧНЫЕ Выберите три варианта. В результате реакций матричного типа синтезируются молекулы 1) полисахаридов 2) ДНК 3) моносахаридов 4) иРНК 5) липидов 6) белка
В каких из перечисленных органоидов клетки происходят реакции матричного синтеза? Определите три верных утверждения из общего списка, и запишите цифры, под которыми они указаны. 1) центриоли 2) лизосомы 3) аппарат Гольджи 4) рибосомы 5) митохондрии 6) хлоропласты
Выберите из перечисленных ниже реакций две, относящихся к реакциям матричного синтеза. Запишите цифры, под которыми они указаны. 1) синтез целлюлозы 2) синтез АТФ 3) биосинтез белка 4) окисление глюкозы 5) репликация ДНК
ГЕНЕТИЧЕСКИЙ КОД 1. Выберите три верных ответа из шести и запишите цифры, под которыми они указаны. К каким последствиям приведёт замена одного нуклеотида на другой в последовательности иРНК, кодирующей белок? 1) В белке обязательно произойдёт замена одной аминокислоты на другую. 2) Произойдёт замена нескольких аминокислот. 3) Может произойти замена одной аминокислоты на другую. 4) Синтез белка в этой точке может прерваться. 5) Аминокислотная последовательность белка может остаться прежней. 6) Синтез белка в этой точке всегда прерывается.
2. Выберите три верных ответа из шести и запишите цифры, под которыми они указаны. Укажите свойства генетического кода. 1) Код универсален только для эукариотических клеток. 2) Код универсален для эукариотических клеток, бактерий и вирусов. 3) Один триплет кодирует последовательность аминокислот в молекуле белка. 4) Код вырожден, так как одна аминокислота может кодироваться несколькими кодонами. 5) 20 аминокислот кодируются 61 кодоном. 6) Код прерывается, так как между кодонами есть промежутки.
2. Сколько нуклеотидов содержит м-РНК, если синтезированный по ней белок состоит из 180 аминокислотных остатков? В ответе запишите только соответствующее число.
3. Сколько нуклеотидов содержит м-РНК, если синтезированный по ней белок состоит из 250 аминокислотных остатков? В ответе запишите только соответствующее число.
4. Белок состоит из 220 аминокислотных звеньев (остатков). Установите число нуклеотидов участка молекулы иРНК, кодирующей данный белок. В ответе запишите только соответствующее число.
2. Белок состоит из 180 аминокислотных остатков. Сколько нуклеотидов в гене, в котором закодирована последовательность аминокислот в этом белке. В ответе запишите только соответствующее число.
3. Фрагмент молекулы ДНК кодирует 36 аминокислот. Сколько нуклеотидов содержит этот фрагмент молекулы ДНК? В ответе запишите соответствующее число.
4. Сколько нуклеотидов в участке гена кодируют фрагмент белка из 25 аминокислотных остатков? В ответ запишите только соответствующее число.
5. Сколько нуклеотидов во фрагменте матричной цепи ДНК кодируют 55 аминокислот во фрагменте полипептида? В ответе запишите только соответствующее число.
2. Фрагмент молекулы белка состоит из 25 аминокислот. Сколько молекул тРНК участвовали в его создании? В ответе запишите только соответствующее число.
3. Какое количество молекул транспортных РНК участвовали в трансляции, если участок гена содержит 300 нуклеотидных остатков? В ответе запишите только соответствующее число.
4. Белок состоит из 220 аминокислотных звеньев (остатков). Установите число молекул тРНК, необходимых для переноса аминокислот к месту синтеза белка. В ответе запишите только соответствующее число.
5. Сколько молекул тРНК доставляют на рибосому 30 аминокислот для синтеза белка? В ответе запишите только соответствующее число.
2. Сколько триплетов кодирует 32 аминокислоты? В ответ запишите только соответствующее число.
3. Сколько триплетов участвует в синтезе белка, состоящего из 510 аминокислот? В ответе запишите только количество триплетов.
4. Сколько триплетов в молекуле иРНК кодируют белок, состоящий из 102 аминокислот? В ответе запишите только соответствующее число.
2. Ген состоит из 900 нуклеотидов. Сколько аминокислот кодирует этот ген, сколько транспортных РНК будет участвовать в синтезе белка на этом гене? Запишите два числа в порядке, указанном в задании, без разделителей (пробелов, запятых и т.п.).
3. Какое число аминокислот в белке, если его кодирующий ген состоит из 600 нуклеотидов? В ответ запишите только соответствующее число.
4. Сколько аминокислот кодирует 1203 нуклеотида? В ответ запишите только количество аминокислот.
5. Сколько аминокислот необходимо для синтеза полипептида, если кодирующая его часть иРНК содержит 108 нуклеотидов? В ответе запишите только соответствующее число.
СЛОЖНО Белок имеет относительную молекулярную массу 6000. Определите количество аминокислот в молекуле белка, если относительная молекулярная масса одного аминокислотного остатка 120. В ответе запишите только соответствующее число.
В двух цепях молекулы ДНК насчитывается 3000 нуклеотидов. Информация о структуре белка кодируется на одной из цепей. Подсчитайте сколько закодировано аминокислот на одной цепи ДНК. В ответ запишите только соответствующее количеству аминокислот число.
При транскрипции гена была синтезирована иРНК длиной 680 нуклеотидов. Затем из неё были вырезаны три интрона (некодирующих участка) по 82, 114 и 127 нуклеотидов. Сколько аминокислот будет содержать белок, полученный при трансляции этой иРНК? В ответ запишите только количество аминокислот.
АМИНОКИСЛОТ-НУКЛЕОТИДОВ-ТРИПЛЕТОВ В процессе трансляции молекулы гормона окситоцина участвовало 9 молекул тРНК. Определите число аминокислот, входящих в состав синтезируемого белка, а также число триплетов и нуклеотидов, которые кодируют этот белок. Запишите числа в порядке, указанном в задании, без разделителей (пробелов, запятых и т.п.).
АМИНОКИСЛОТ-НУКЛЕОТИДОВ-ТРНК Участок молекулы ДНК содержит 10 триплетов. Сколько аминокислот зашифровано в этом участке? Сколько потребуется нуклеотидов информационной РНК и сколько потребуется транспортных РНК для синтеза участка молекулы белка, состоящего из этих аминокислот? Запишите числа в порядке, указанном в задании, без разделителей (пробелов, запятых и т.п.).
НУКЛЕОТИДОВ-НУКЛЕОТИДОВ-ТРНК Белок состоит из 240 аминокислот. Установите число нуклеотидов иРНК и число нуклеотидов ДНК, кодирующих данные аминокислоты, а также общее число молекул тРНК, которые необходимы для переноса этих аминокислот к месту синтеза белка. Запишите три числа в порядке, указанном в задании, без разделителей (пробелов, запятых и т.п.).
НУКЛЕОТИДОВ-ТРИПЛЕТОВ-ТРНК Участок молекулы белка содержит 3 аминокислоты. Сколько потребовалось нуклеотидов иРНК, триплетов иРНК и транспортных РНК для синтеза этого участка? Запишите числа в порядке, указанном в задании, без разделителей (пробелов, запятых и т.п.).
Сколько нуклеотидов составляют один стоп-кодон иРНК, сколько стоп-кодонов в генетическом коде?Запишите два числа в порядке, указанном в задании, без разделителей (пробелов, запятых и т.п.).
Сколько нуклеотидов составляют антикодон тРНК, кодон иРНК, триплет ДНК? Запишите три числа в порядке, указанном в задании, без разделителей (пробелов, запятых и т.п.).
Рассмотрите рисунок с изображением процессов, протекающих в клетке, и укажите А) название процесса, обозначенного буквой А, Б) название процесса, обозначенного буквой Б, В) название типа химических реакций. Для каждой буквы выберите соответствующий термин из предложенного списка. 1) репликация 2) транскрипция 3) трансляция 4) денатурация 5) реакции экзотермические 6) реакции замещения 7) реакции матричного синтеза 8) реакции расщепления
Рассмотрите рисунок и укажите (А) название процесса 1, (Б) название процесса 2, (в) конечный продукт процесса 2. Для каждой буквы выберите соответствующий термин или соответствующее понятие из предложенного списка. 1) тРНК 2) полипептид 3) рибосома 4) репликация 5) трансляция 6) конъюгация 7) АТФ 8) транскрипция
Все перечисленные ниже признаки, кроме двух, используются для описания изображенного на рисунке процесса. Определите два признака, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны. 1) по принципу комплементарности последовательность нуклеотидов молекулы ДНК переводится в последовательность нуклеотидов молекул различных видов РНК 2) процесс перевода последовательности нуклеотидов в последовательность аминокислот 3) процесс переноса генетической информации из ядра к месту синтеза белка 4) процесс происходит в рибосомах 5) результат процесса – синтез РНК
Молекулярная масса полипептида составляет 30000 у.е. Определите длину кодирующего его гена, если молекулярная масса одной аминокислоты в среднем равна 100, а расстояние между нуклеотидами в ДНК составляет 0,34 нм. В ответе запишите только соответствующее число.
Установите соответствие между функциями и структурами, участвующими в биосинтезе белка: 1) ген, 2) рибосома, 3) тРНК. Запишите цифры 1-3 в порядке, соответствующем буквам. А) транспортирует аминокислоты Б) кодирует наследственную информацию В) участвует в процессе транскрипции Г) образуют полисомы Д) место синтеза белка